Role of force-sensitive amyloid-like interactions in fungal catch-bonding and biofilms

Eukaryot Cell. 2014 Mar 28.



The Candida albicans Als adhesin Als5p has an amyloid-forming sequence that is required for aggregation and formation of model biofilms on polystyrene. Because amyloid formation can be triggered by force, we investigated whether laminar flow could activate amyloid formation and therefore increase binding to surfaces. Shearing Saccharomyces cerevisiae cells expressing Als5p or C. albicans at 0.8 dyne/cm2 increased quantity and strength of cell-to-surface and cell-to-cell binding, compared to 0.02 dyne/cm2. Thioflavin T fluorescence showed that the laminar flow also induced adhesin aggregation into surface amyloid nanodomains in Als5p-expressing cells. Inhibitory concentrations of amyloid-dyes thioflavin S, Congo red, or a sequence-specific anti-amyloid peptide decreased binding and biofilm formation under flow. Shear-induced binding also led to formation of robust biofilms. There was less shear-activated increase in adhesion, thioflavin fluorescence, and biofilm formation in cells expressing the amyloid-impaired V326N-substituted Als5p. Similarly, S. cerevisiae cells expressing Flo1p or Flo11p flocculins also showed shear-dependent binding, amyloid formation, biofilm formation, and inhibition by anti-amyloid compounds. Together these results show that laminar flow activated amyloid formation and led to enhanced adhesion of yeast cells to surfaces and to biofilm formation.



Keyword: Microbiology, Biofilm